

FEMSITE 4.8 Pushing the Limits

Introduction of Modules and Functionalities

FEMSITE: Modules and Functionalities

Module FEMSITE Load Analysis

Analysis of measured or calculated load spectra.

Virtual and / or

physical road load

Supports a variety of established data formats, as for example:

Diadem/Diadago, RPCIII, RigSys, DASYLab, Adams, DADS, ASCII, TDM, etc.

as PSD, rainflow matrices, statistic values,...

- load spectra comparison

evaluations available such

- selective shortening
- MBS/FEM interface
- signal editing

Large number of

- representative lap
- shaker program generation
- block program generation

Transformed and / or selective shortened load time histories will be used on test rigs or for simulation

ASCII

1/26/2024

Module FEMSITE Fatigue – Part 1

Node independent generation of joining technique without any modification of mesh. Also available as interface in preprocessors Medina, Hypermesh and ANSA

Identification of **stress conditions** of **spotwelds**, areas with **high deformation** in a **flange** based on several load cases in early project phases. **optimization** regarding number and position.

Global characteristics of a car body such as **torsion**, **bending stiffness** and other evaluations available.

Component related evaluations to identify parts which have a large influence on a certain load case.

Variante1 /2 Lastfall		Variante 1		Variante 2 Biegung										
		Torsion												
Erstelld	latum:	21-Nov-12		21.Nov.	12									
Netz		Bezeichnung	Spar [Nir	nm2]	Die (m	ske m]	Elen an:	sent- zahl	Mar	sse gj	Verformungsarbeit [% von Auswertegr.]		Nutzu zah	ungs - sl [-]
		Variante:		2	1	2	1	2	1	2	1	2	1	2
1105	HALT	EBOCK HILFSR, HI 19	28.93	2.77	1,75	1,75	336	335	0.421	0.421	0.049	0.014	0.390	0,111
1110	SCHM	WELLER AUSSEN I	55.63	11.94	1,75	1,75	3154	3154	9,009	9,009	3,220	3,292	1,203	1.230
1145	SCHIV	WELLER AUSSEN re	56.56	12.23	1.75	1,75	3142	3142	9.002	9.002	3,340	3,446	1,249	1,288
115	DECK	BLECH LTR Ted 1 re	3.59	1,87	1,60	1,60	246	246	0,379	0.379	0.007	0.002	0.053	0.017
1180	SITZO	UERTRAEGER	29.63	74,12	0,70	0,70	2260	2260	1,953	1,953	0.332	7,546	0.573	13:002
1185	SITZO	UERTRAEGER re	31,01	82.84	0,70	0,70	2242	2242	1,954	1,954	0.332	7.392	0.573	12.782.
120	LTR V	/O TEIL 1 li	15,59	0.30	2.00	2,00	467	467	0.873	0,873	0.049	0.000	0,187	0.001
1205	VST F	FUEHRUNGSSCH VO	4.41	69,65	2.00	2.00	256	256	0.341	0.341	0.004	7,562	0.042	74.578
1235	VST F	FUEHRUNGSSCH HI	5.91	31.27	2.00	2,00	176	176	0.359	0,359	0,008	1,707	0.075	16,000
1240	ABSC	HUSSTEIL TUNNELBR, I	53,06	51,57	1,00	1,00	999	999	1,245	1,245	0,298	2,421	0.807	6,546
125	LTR V	/O TEIL 1 re	5.87	0.40	2.00	2.00	483	483	0.887	0.837	0.029	0.001	0.111	0,003
1250	ABSC	CHLUSSTEIL TUNNELBR, re	54,84	38,29	1,00	1,00	998	998	1,242	1,242	0,310	2,069	0,839	5,605
1275	VST F	FERSENBLECH	15,15	35,42	1,25	1,25	1498	1498	1,926	1,926	0,150	2,798	0,262	4,890
1290	ZWIS	CHENSTUECK LTR I	26.50	15.80	1.75	1.75	330	330	0.432	0.432	0.197	0.532	1,537	4,141

MAGNA FEMSITE v4.1	CarBody - PlotEl's					
Element ID	Change in length [mm]					
front_door_left	•					
Load Case 100, Group 401						
131	0,184937					
132	-0,150879					
front_door_left						
Load Case 200, Group 401						
131	-0,015503					
132	-0,033203					

v49: Ecological footprint

Different input and output interfaces available:

- Nastran: op2, Bulk Data
- Patran: Neutral file format
- Abaqus: odb

- Medina: bif / bof
- Universal file format

USP

Module FEMSITE Fatigue – Part 2

Module FEMSITE Fatigue – Bolt safety calculation

- FEMSITE supports efficient bolt safety calculations (safety against slipping & safety against overload breakage) in time domain
- Bolt types are managed in the central FEMSITE
 Joints database
- Bolts can be easily defined in preprocessor Ansa.
- Export of the results for common postprocessors is available
- Special detailed evaluations can be performed in FEMSITE
 - Bolt evaluation table
 - Time-history plots of bolt forces, moments and safety values
 - Bolt efficiency slipping
- Recalculation of the bolts allows the user to modify bolt parameters and quickly rerun the bolt calculation without FE- solver
- Basic load cases bolts allows the user to directly study basic load cases from an FEcalculation
 1/26/2024

Five reasons to develop structure and durability with FEMSITE

- **FEMSITE** is a workflow oriented software which covers the complete development process for automotive industry including **stiffness**, **strength and durability**
- FEMSITE Load Analysis for processing and validation of load spectra
- FEMSITE can handle very large models (~10,000,000 elements) with full joining technique for complete load spectra. Very short calculation time due to DMP-parallelization and intelligent filtering of elements and/or cutting planes use
- FEMSITE is best in class regarding the cost / functionality ratio
- FEMSITE has been developed and validated in many project applications across the OEMs for more than 25 years

contact persons:

s: gerhard.kepplinger@magna.com phone: +43 664 8840 2973

m.hofer@magna.com phone: +43 664 8840 5748